
ALCF Early Science Program for Xeon Phi Supercomputers

Argonne Leadership Computing Facility

2012

IBM Blue Gene/Q

49,152 Power A2 nodes

10 petaFLOPS

768 TB RAM

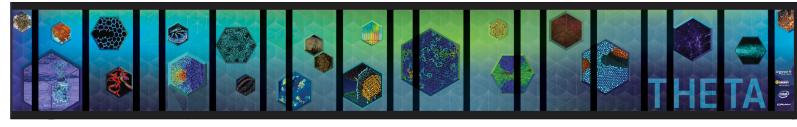
Aurora

2018

Intel-Cray system

>50,000 KNH nodes

180 petaFLOPS


>7 PB {HBM + DRAM + NVM}

Argonne Leadership Computing Facility

Theta

2016

Intel-Cray system

3240 KNL-7230 nodes

8.62 petaFLOPS

673 TB {HBM + DRAM}

ALCF Early Science Program

Applications Readiness

- Prepare applications for next-gen system:
 - Architecture
 - Scale

Proposals

- Ambitious targeted science calculation
- Parallel performance
- Development needed
- ⊙ Team

Support

PEOPLE

- Funded ALCF postdoc
- Catalyst staff member support
- Vendor experts

TRAINING

- Training on HW and programming
- Community workshop to share lessons learned

COMPUTE RESOURCES

- Current ALCF systems
- Early next-gen hardware & simulators
- 3 months dedicated Early Science access
 - Pre-production (post-acceptance)
 - Large time allocation
 - Continued access for rest of year

ESP Timeline

Task	CY2015				CY2016				CY2017				CY2018				CY2019			
	Q1	Q2	Q3	Q4	Q1	Q2	Q4	Q4												
Theta CFP																				
Theta selection																				
Theta ESP projects																				
Theta Early Science																				
Aurora CFP																				
Aurora selection																				
Aurora ESP projects																				
Aurora Early Science																				
Mira production																				
Theta production																				
Aurora production																				

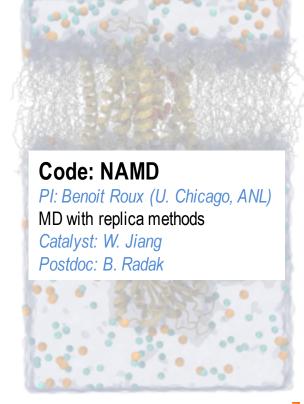
Theta ESP Projects

Theta ESP Projects

PI: Fabien Delalondre (EPFL) Many coupled, nonlinear ODEs Catalysts: Y.Alexeev, T. Williams Code: HACC

PI: Katrin Heitmann (ANL) N-body gravity + SPH hydro Catalysts: H. Finkel, A. Pope

Postdoc: J.D. Emberson


Code: SU2

PI: Juan Alonso (Stanford U) Large Eddy Simulation, O(3-4) Catalyst: R. Balakrishnan

Code: HSCD

PI: Alexei Khokhlov (U. Chicago) DNS, reacting flows, patch AMR Catalyst: M. Garcia

Theta ESP Projects

Finkel+ Wed. 3:50

Code: HACC

PI: Katrin Heitmann (ANL)
N-body gravity + SPH hydro
Catalysts: H. Finkel, A. Pope
Postdoc: J.D. Emberson

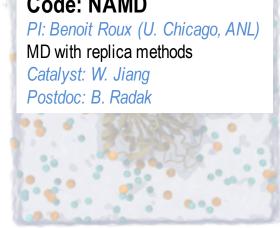
Codes: WEST & Qbox Pl: Giulia Galli (U. Chicago)

MBPT & ab initio MD

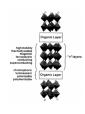
Catalyst: C. Knight Postdoc: H. Zheng

Code: CoreNeuron

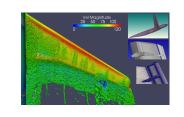
PI: Fabien Delalondre (EPFL)
Many coupled, nonlinear ODEs
Catalysts: Y.Alexeev, T. Williams


Code: SU2

PI: Juan Alonso (Stanford U)
Large Eddy Simulation, O(3-4)
Catalyst: R. Balakrishnan

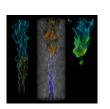


PI: Alexei Khokhlov (U. Chicago)
DNS, reacting flows, patch AMR
Catalyst: M. Garcia


Tier 2 Theta ESP Projects

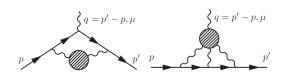
Codes: FHI-Aims & GAtor

PI: Volker Blum (Duke U.)
MBPT (DFT) & genetic algorithm


Catalyst: Álvaro Vázquez-Mayagoitia

Code: PHASTA

PI: Kenneth Jansen (U. Colorado)
CFD, unstructured mesh


Catalyst: Hal Finkel

Code: Nek5000

PI: Christos Frouzakis (ETHZ)
Spectral element CFD with combustion

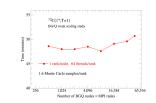
Catalyst: Scott Parker

Codes: MILC & CPS

PI: Paul Mackenzie (FNAL)

Lattice QCD

Catalyst: James Osborn

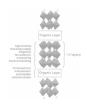


Code: GAMESS

PI: Mark Gordon (Iowa State U.)

FMO - quantum chemistry

Catalysts: Yuri Alexeev, Graham Fletcher


Code: GFMC

PI: Steven Pieper (ANL)

Greens Function Monte Carlo - nuclear

Catalyst: James Osborn

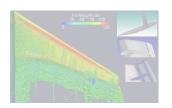
Tier 2 Theta ESP Projects

Codes: FHI-Aims & GAtor

PI: Volker Blum (Duke U.)
MBPT (DFT) & genetic algorithm
Catalyst: Álvaro Vázquez-Mayagoitia

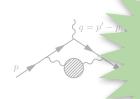
Code: Nek5000

PI: Christos Frouzakis (ETHZ)
Spectral element CFD with combustion
Catalyst: Scott Parker



Code: GAMESS

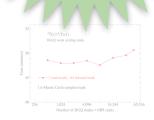
PI: Mark Gordon (le: FMO - quantum cherr Catalysts: Yuri Alexee


Wed. 11:15

Alexeev+

Code: PHASTA

PI: Kenneth Jansen (U. Colorado) CFD, unstructured mesh Catalyst: Hal Finkel



Codes: MILC & CPS

7: Paul Mackenzie (T)

atalyst: James Osbo

Li+ Wed. 3:50

Osborn

Wed. 11:15

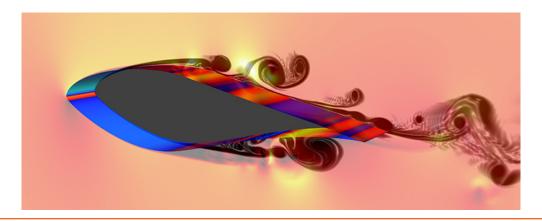
Code: GFMC

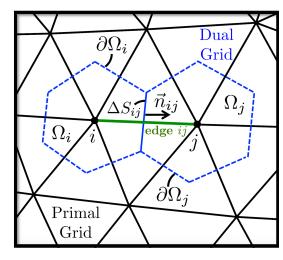
PI: Steven Pieper (ANL)
Greens Function Monte Carlo – nuclear

Catalyst: James Osborn

ALCF Theta ESP Hands-on Workshop

- ⊙ Developers from all 12 ESP projects
- Intel and Cray applications experts
- Two mornings of Intel, Cray developer environment presentations
- ⊙ Hands-on
 - Profile, analyze, tune
 - Scaling studies


Scale-Resolving Simulations of Wind Turbines with SU2


Renewable Energy, Engineering, CFD

Codes: SU2

PI: Juan J. Alonso (Stanford)

- Large Eddy Simulation (LES) of a few turbines plus tower
 - Third order finite volume
 - High order discontinuous Galerkin
- LES results feed reduced-order Kinematic Simulation for wind farm design
- SU2 evolving into high-end open source CFD package (community code)
 - Finite volume methods
 - Unstructured mesh

Using Xeon Phi Features

Threads

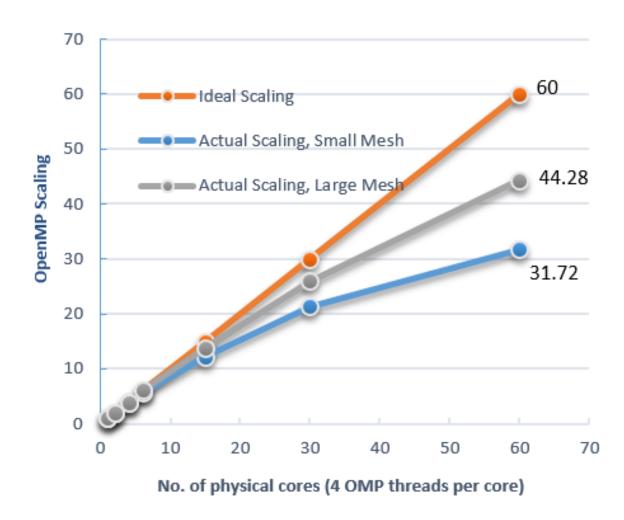
- 1. Loop-level
- 2. Single OMP parallel region at high level in program
- 4 hot spots (edge loops)
 - Thread "owner" of edges
 - Edges touching shared node replicated (halo)
 - Many vert updates: static
 - Few vert updates: dynamic

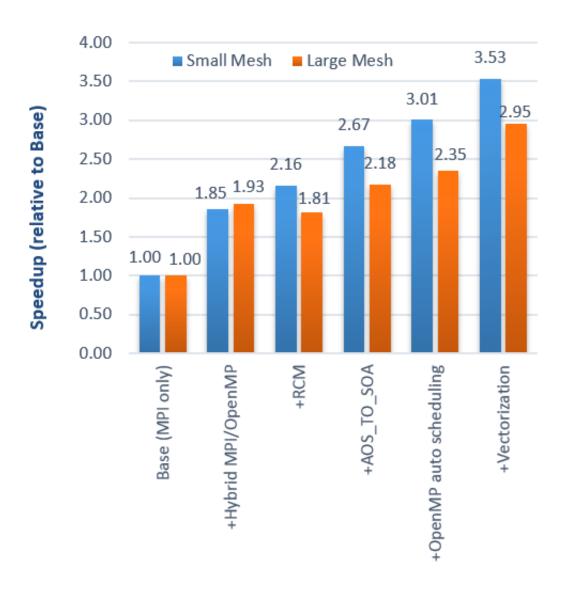
Vectorization

- Outer loop (edges)
- Loop tiling

```
for (iEdge = 0; iEdge < nEdges; iEdge += VECSIZE) {
   for (ivec = 0; ivec < VECSIZE, ++ivec) {</pre>
```

Memory Hierarchy


- Edge/vertex reordering
- Smart allocation
- Change AoS to SoA


http://dx.doi.org/10.1016/j.compfluid.2016.02.003 (Computers & Fluids, 2016)

http://dx.doi.org/10.2514/6.2015-1949 (AIAA, 2015)

https://software.intel.com/en-us/articles/high-performance-modern-code-optimizations-for-computational-fluid-dynamics (Intel Developer Zone, 2015)

KNC Performance

KNL Findings

- All optimizations from KNC effort carried over to good effect on KNL
 - (thread scheduling still under study)
- Speedups on Broadwell also
- Altogether, optimizations led to >9X speedup on KNL

Large Scale Simulation of Brain Tissue: Blue Brain Project

- Large set of nonlinear ODEs
 - Backward Euler time discretization
 - Spatial discretization: cylindrical compartment elements
 - Small linear system per neuron—quasi-tridiagonal

NMODL (DSL)
Description

Code generator

Modeling Kernels
C/C++/CUDA/
OpenMP/...

Framework (C/C++)

Compiler Executable

Neuroscience

Codes: CoreNeuron

Four Science Cases

- 1. Microcircuit plasticity
 - © Experience-dependent changes in synaptic connectivity
 - May be substrate for learning and memory
- ⊙ A few neocortical columns:
 - 31,000 neurons

- 4. Largest possible brain model on *Theta*
- Several seconds of biological time

2. Neurorobotics

- © Electrical activity of rodent somatosensory cortex
 - Morphologically detailed neurons
 - o 20 million neurons, 20 billion synapses
- © Embed model in simulated body
 - Study activity & plasticity in closed action/perception loop
- 3. Compare analysis of simulation results w/experiment
 - © Electrical activity of rodent somatosensory cortex
 - Morphologically detailed neurons
 - o 20 million neurons, 20 billion synapses
 - Increase accuracy & validity of model

Using KNL Features

Memory hierarchy

- ⊙ Case 1 mostly fit in L2 cache
- ⊙ Case 2 mostly fit in MCDRAM
- - © Cache mode
 - Flat: memory bound kernels in MCDRAM compute bound kernels in DRAM

Vectorization

- Mostly memory bound, limits importance
- DSL generates
 - 1. Compiler directives
 - #pragma vector nontemporal
 - #pragma ivdep
 - 2. Vector intrinsic function calls not yet needed.

Threads

- Knights Corner Xeon Phi coprocessor: 1 rank, 120 threads
- More parallelism for case 1: across compartments

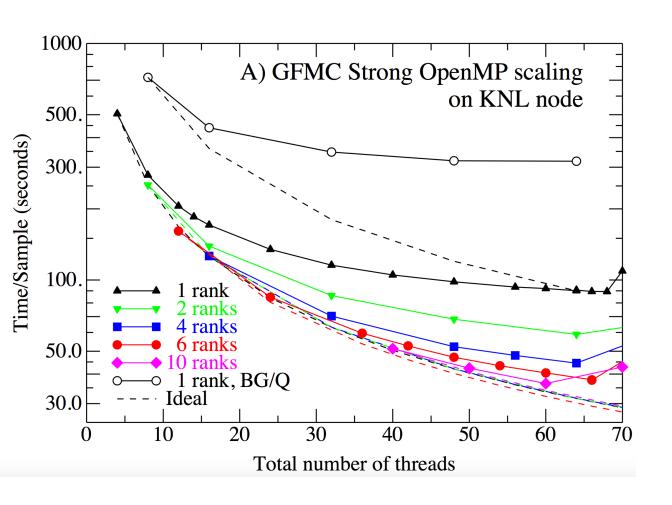
Quantum Monte Carlo Calculations in Nuclear Theory

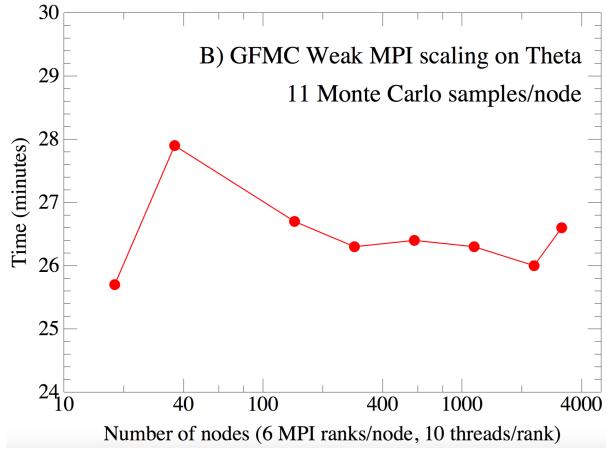
PI: Steven Pieper (ANL)

Nuclear Physics

Codes: GFMC

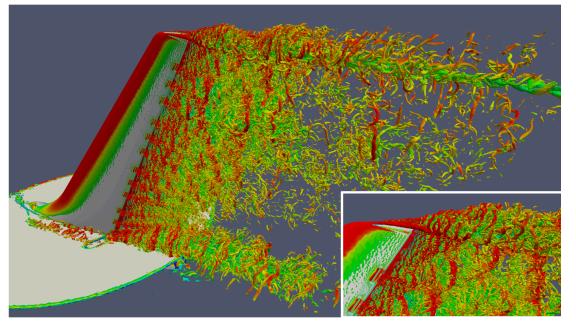
- Parallelism:


 - DMEM distributed memory mgt system (MPI)
- Further plans:
 - Repetitive matrix-vector operations in HBM
 - Use MPI-3 shared memory
- Issues
 - Several OpenMP bugs (1 submitted)
 - © Cray environment learning curve
 - Requires env var to allow MPI_THREAD_MULTIPLE

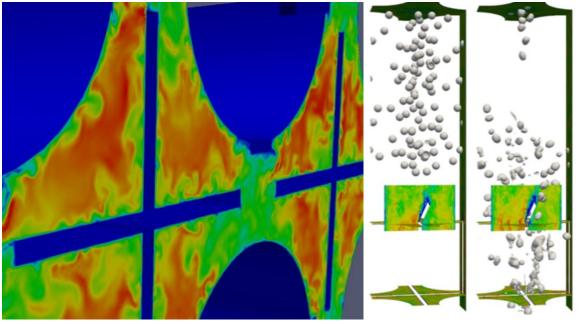

Science

- Greens Function Monte Carlo: solve many-body
 Schrödinger equation for light nuclei
- o ¹²C charged-current response (MiniBooNE exp)
- $\circ \beta$ decay in ¹⁴O and ¹⁴C

GFMC Performance Snapshot



Extreme Scale Unstructured Adaptive CFD: From Multiphase Flow to Aerodynamic Flow Control


CFD, Aerodynamics, Nuclear Energy

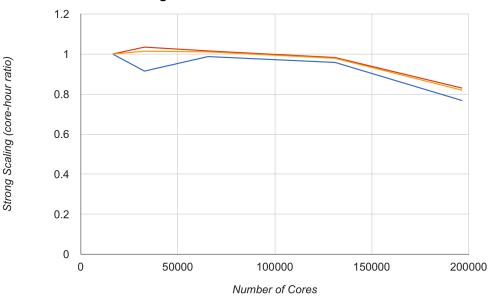
Codes: PHASTA

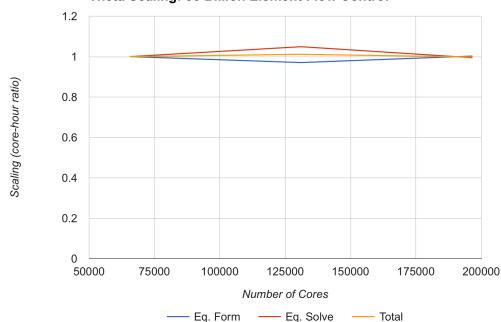
- PI: Ken Jansen (U. Colorado)
- Navier-Stokes: compressible/incompressible, turbulent, unsteady
- ⊙ 3D finite element, unstructured adaptive mesh
- Fully implicit in time

Active Flow control on vertical tail

Turbulent multiphase flow in reactor

PHASTA Parallel Strategy


- - © Equation formation (element loops sub-blocked for optimal cache-vectorization balance),
 - © Equation solution (dominated by Sparse Ap, BLAS{1,2}).
- Base: Pure MPI (scaled to 3M processes).
- OpenMP: explore hybrid parallelism (Theading element block loops, Ap loops) => 80% efficiency.
- Advanced Dev: implementation in MPI Endpoints, MPI3.0+shared memory windows, and XSI shmem for on-node parallelism.
- Vectorization: Aggressive tuning under VTUNE and Advisor confirms high degree of vectorization: already 5x Mira core performance -> clear path to 2x more.
- ⊙ 2 efficient solvers continuously improved: PETSc and native+mkl.


PHASTA Scaling on Theta

- 10B and 80B element mesh: August workshop Pure MPI scale out
 - 10B case scaled >95 % to 128Ki cores
 82% to 192Ki cores (relative to 16Ki cores). 51k elements per core
 - 80B case perfect to 192Ki cores; fits
 in MCDRAM with 1.2M elm. per core
- Proof that Pure MPI will scale to full Theta machine on the first Detached Eddy Simulation of active flow control at a ½ Flight Scale, vertical tail/rudder.

Theta Scaling: 10 Billlion Element Flow Control

Theta Scaling: 80 Billion Element Flow Control

